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Analysis and Synthesis of
Processes via Shannon Wavelets

Eli Shusterman and Meir Feder

Abstract—1=fff processes can be very useful in modeling processes with
long-term correlation. We propose analysis and synthesis procedures to
express these processes in terms of the Shannon wavelet. Unlike previous
techniques, our analysis procedure generates uncorrelated decomposition
coefficients for the1=fff process. This is done by taking onto account, and
then removing, the residual correlation between the wavelet components.
The analysis procedure is the major contribution of this work. The
proposed synthesis algorithm, which is a byproduct of the proposed
analysis algorithm, is competitive with other techniques.

Index Terms—Nonstationary processes,1=fff noise, spectral analysis,
wavelets.

I. INTRODUCTION

Fractional Brownian motions, or1=fff processes, model well pro-
cesses with long correlation time. However, in contrast with the
standard models for stochastic processes, e.g., ARMA models, which
fit well data with short-term correlation, the1=fff process is nonsta-
tionary [1]–[4]. Thus, the usual approach for analysis and synthesis
in terms of sinusoidal waveforms (Fourier analysis), developed for
stationary processes, does not fit the nonstationary1=fff process. For
the comprehensive review on1=fff processes, see [4].

During the last two decades, various techniques for synthesis of
1=fff processes appeared in the literature; see, for example, [3]–[9].
However, a complete and satisfactory solution to the analysis problem
is still needed. Roughly speaking, the analysis problem is as follows.
Given a random process with a known (or assumed) second-order
properties, find the transformation that decorrelates the process.
Under appropriate conditions, this transformation can be evaluated by
solving an eigenvalue, eigenvector problem; this is the well-known
Karhunen–Lòeve (K–L) transform. For stationary processes with long
observation time, the K–L transform becomes the Fourier transform.
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In some other cases, the discrete cosine transform (DCT) approxi-
mates the K–L transform [10]. However, in many cases, including
our case of1=fff processes, the calculation of the K–L transform is
difficult and even impossible. Furthermore,1=fff processes are not
stationary. Thus, if the K–L transform is calculated for short blocks,
as often done in practice, it will be time dependent.

As shown in [1], [3], and [11], by using wavelets with an
appropriate basic wavelet function, a nonstationary process can be
decomposed into a number of stationary processes. These processes
can be analyzed independently by tools developed for stationary
processes and then combined again by applying the inverse Wavelet
transform into the desired1=fff process.

In this work, we first show a simple way to calculate the correlation
between the wavelet coefficients and apply the result to the1=fff

processes. This is then used as the basis for a new technique for
analysis and synthesis of the1=fff process, which takes into account
the calculated residual correlation between the wavelet coefficients
and use it to whiten the wavelet coefficients.

II. BACKGROUND

The usual definition of the power spectrum holds only for stationary
processes. There exist, however, a number of definitions of a gener-
alized power spectrum that are suitable for nonstationary processes,
such as the time-averaged spectrum, which we use throughout the
paper:

Sx(!) =
1

�1

EtfRx(t; t+ �)g exp�j!� d� (1)

where Rx(t1; t2) is the correlation function of the processx(t),
j =

p�1, and Etf:g is the time averaging operation. The time-
averaged spectrum of1=fff processes [4], [9] is given by

Sx(!) =
k

j!j (2)

wherek is some positive constant, and is the process parameter,
which raises difficulties at the origin and/or at infinity. This last
problem, however, is not too severe since, in complete agreement
with our measurement ability, we can assume that the process is
viewed after passing through a bandpass filter with a lower cutoff
frequency near the origin and an upper cutoff frequency as large as
desired.

A powerful tool for dealing with the nonstationary nature of1=fff
processes is the wavelet transform [12]. Our interest is restricted to
the orthonormal dyadic wavelet expansions. The orthonormal dyadic
wavelet transform of the signalx(t) is expressed as

amn =
1

�1

x(t)2m=2 (2mt� n) dt (3)

where  (t) is a basic wavelet that satisfies some admissibility
conditions [12]. Inversely, the processx(t) can be represented as

x(t) =

1

m=�1

1

n=�1

amn2
m=2 (2mt� n): (4)
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In our case, we are looking for a wavelet whose dilations do not
overlap in frequency, i.e.,

suppf	(2
�m

!)g suppf	(2
�l
!)g = ;; 8 l 6= m (5)

where 	(!) is a Fourier transform of (t). A wavelet function
satisfying this property is the Shannon wavelet

	(!) =

1

2�
� � j!j < 2�

0; otherwise.
(6)

The decomposition of a stationary signal produces, with any
wavelet, a stationary output for which the power spectral density
at a scalem will be

Sx(!; m) = 2
�m

j	(2
�m

!)j
2
Sx(!) (7)

whereSx(!; m) denotes the power spectrum of the time process
x(t) at scalem. Note that if the wavelet (!) is chosen to be the
Shannon wavelet, then (7) becomes

Sx(!; m) = Sx(!) 2m� � j!j < 2m+1�

0 otherwise.
(8)

Under certain condition, which are stated in [1] and [11], the
decomposition of a nonstationary process produces a stationary
output, i.e., (7) and (8) can be applied to the time-averaged spectrum
of the nonstationary process. It is interesting to note that this property
leads to a natural definition of1=fff processes, as shown in [4].

III. M AIN RESULTS

We begin by presenting an expression for the correlation function
of the wavelet decomposition coefficients and apply this expression
for 1=fff processes. This result appears in more detail in [4], [6], [13],
and [14], but since our procedure is based on this expression, it is
repeated here. Then, we present our analysis/synthesis algorithms for
1=fff processes.

A. Correlation Between the Wavelet Decomposition Components

Under certain conditions, the decomposition of a nonstationary
process produces a stationary output. Specifically, as shown in [11],
the condition for stationarity of the wavelet decomposition output is
r � D � 1, wherer is the number of vanishing moments of the
basic wavelet, andD is the order of the input process with stationary
increments as defined in [11]. It is easy to check that the order of the
1=fff process isD = 1. Thus, the decomposition of the1=fff process
x(t) with any wavelet will produce stationary output, for which the
power spectral density at a scalem, which is denotedSx(!; m),
will be

Sx(!; m) = 2
�m

j	(2
�m

!)j
2
Sx(!): (9)

On the other hand, since the number of vanishing moments for
an ideal Shannon wavelet tends to infinity, the Shannon wavelet
decomposition is sufficient to decompose any1=fff process into a
number of stationary processes.

Let R(m; k; n; l) = Efamna
�

klg. Using the assumption that
the basic wavelet is strictly localized and that various wavelet
decomposition components do not overlap in frequency [see (6)], the
power spectrum on the interval[�2m+1�; �2m�][[2m�; 2m+1�] is

Sx(!; m) =

1

n=�1

1

l=�1

R(m; n; l) expf�j!2
�m

(n� l)g:

(10)

As mentioned previously, the Shannon wavelet decomposition of the
continuous-time1=fff process produces stationary outputs. Thus, (10)
becomes

Sx(!; m) =

1

n=�1

R(m; jnj) cos(!2
�m

n): (11)

On the given interval, the setfcos(2�m!n)gn2Z is an orthogonal
family of functions; therefore, the normalized autocorrelation function
of the components for any finite numbersm, n can be calculated by

�(m; jnj) =
R(m; jnj)

R(m; 0)

=
2

2�

�

Sx(2
m!) cos(n!)d!

2�

�

Sx(2m!)d!

n 6= 0

1 n = 0:

(12)

It should be pointed out that (12) holds only for the Shannon
wavelet (rectangular in frequency). However, these equations can
give a reasonable estimate of the correlation between the wavelet
coefficients for a class of wavelets whose shape is close to the shape
of the Shannon wavelet.

B. New Analysis and Synthesis Procedures

In this subsection, we propose a solution to the analysis problem
using two main observations. The first is the fact that the wavelet
decomposition of a nonstationary signal produces a number of station-
ary signals. The second observation is that the same autocorrelation
function describes the behavior of the wavelet coefficients at all
scales. Substituting the expression for time-averaged spectrum of the
1=fff process and the Shannon wavelet into (12), we get

�(m; n) =
R(m; n)

R(m; 0)

=
2

2�

�

!� cos(n!)d!

2�

�

!� d!

n 6= 0

1 n = 0:

(13)

As expected, for1=fff processes, this ratio does not depends on
m, i.e., the correlation of components is the same for all levels of
decomposition. The integral in the numerator is difficult to evaluate
analytically, but it can be evaluated numerically. The result for two
values of is given in the second row of Tables I and II.

Once the correlation function of the process is known, the analysis
problem, whose purpose is to generate uncorrelated components, can
be solved in many ways, for instance, by using a K–L transformation
that fits this correlation function. Another option is to whiten the
stationary signal by a causal whitening filter of an appropriate
order, which is found from the correlation function by solving the
Yule–Walker equations for the autoregressive (AR) ordern0 case

1 �(1) � � � �(n0)

�(1) 1
... �(n0 � 1)

...
...

...
...

�(n0) �(n0 � 1) � � � 1

1

a(1)
...

a(n0)

=

�2

0
...
0

(14)

where�2 is the variance of the whitened process, andn0 is chosen
such that�(n0) � 1: We have chosen this option. It should
be emphasized that since the correlation function of the wavelet
components is independent of the scalem in the particular case of
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TABLE I
ESTIMATED WAVELET COMPONENTS CORRELATION COEFFICIENTS FOR = 1

TABLE II
ESTIMATED WAVELET COMPONENTS CORRELATION COEFFICIENTS FOR = 2

1=fff processes, it is sufficient to solve (13) and (14) only once, and
the solution gives a desired whitening filter for all bands.

Now, let us discuss the properties of the whitening filter. Since the
spectrumSx(!; m) corresponding to the bandm of the decomposed
1=fff process is strictly positive, the calculated correlation is a strictly
positive definite function, and the solution of the Yule–Walkern0+1
linear equations gives a minimum phase or, in other words, a
causal and stable filter. Following this conclusion, the synthesis filter
exists and is also causal and stable. The synthesis filter is given by
B(!) = 1=A(!), whereA(!) is the whitening filter.

In the presented solution, the derived synthesis filter is not a finite
impulse response (FIR) filter. An alternative solution in which both
the analysis and the synthesis filters are FIR filters follows. Find the
whitening filter by solving (14), and find the synthesis filter by solving
the Yule–Walker equations for the moving-average (MA) ordern0
case

1
�(1)

...
�(n0)

=

b(0) b(1) � � � b(n0 � 1) b(n0)
b(1) � � � b(n0 � 1) b(n0) 0

...
...

...
...

...
b(n0) 0 � � � � � � 0

�

b(0)�

b(1)�

...
b(n0)

�

: (15)

The solution of these nonlinear equations is more complicated and,
in general, not unique. The problem arises because in the MA case,
we assume that the correlation function is strictly zero outside the
given interval, and this assumption can give a correlation function
that is not positive definite. Thus, when the parametern0 is chosen,
it must be verified that the resulting correlation function with zero
extension is a positive definite function. If it is, then the solution will
give a stable synthesis filter.

The whitening filterA(!) can be combined with the decompo-
sition filter using Noble identities and/or polyphase decomposition

[15]–[17], and we get a modified filter for the decomposition. The
same is true for the synthesis filter. Three possible implementations
of the wavelet transform followed by a whitening filter are shown in
Fig. 1. The third (bottom) scheme relates to the polyphase decom-
position of the decomposition filter, where the filter is represented
as

G(!) =

N�1

k=0

g(k) e�j!k

=

(N�1)=2

k=0

g(2k) e�j!2k

+ e
�j!

(N�1)=2

k=0

g(2k + 1) e�j!2k

=Eo(2!) + e
�j!

E1(2!): (16)

The two bottom schemes in Fig. 1 can be regarded as one stage
of a subband decomposition/reconstruction with a lowpass filter
H(!) and a highpass filterC(!) = G(!)A(2!) [ ~H(!) and
~C(!) = ~G(!)B(2!) in the reconstruction]. This decomposition may
be equivalent to some other wavelet decomposition, with another,
possibly nonorthogonal, wavelet base. In [8], it is shown how to find
such a wavelet base that produces the desirable1=fff process. There
is probably a relation between the decomposition filters proposed in
our work and the wavelet bases found in [8]; however, this subject
is still to be investigated.

Usually,  is an unknown parameter. Several algorithms can be
used to estimate it: for example, the EM algorithm described in
[18]. Most of these algorithms include the wavelet transform as a
preprocessing stage. We present the analysis procedures for both
cases, i.e., for known and unknown:

• Known —

a) Calculate the normalized correlation function of the
wavelet coefficients (13) for some givenm. This func-
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(a) (b)

Fig. 1. Possible implementations of one stage wavelet decomposition/reconstraction.

tion can actually be calculated up to a value at lagn0,
where�(no;m) � 1.

b) Solve the Yule–Walker equations for the correlation
function in Step 1, and get the whitening filter.

c) Use the result of Step 2 to modify the highpass filter
G(!) of the wavelet decomposition.

d) Perform the new wavelet decomposition.

• Unknown —

a) Perform the wavelet decomposition.
b) Estimate with the algorithm described in [18].
c) Calculate the normalized correlation function of the

wavelet coefficients (13) for some givenm.
d) Solve the Yule–Walker equations for the correlation

function in Step 3, and get the whitening filter.
e) Filter the output of the wavelet decomposition with the

whitening filter.

The synthesis procedure is simpler. The correlation function for
a given value of and then the whitening filter are calculated. The
inverse wavelet decomposition filter and the inverse of the whitening
filter are combined together. Now, passing white noise into this filter
will produce the desired1=fff process at the output.

IV. SIMULATION RESULTS

In this section, some simulation results for the synthesis and
analysis algorithms are presented and compared with the algorithm
presented in [9]. Since the Shannon wavelet corresponds to an ideal,
unrealizable filter, we may claim that this work is of theoretical
interest only. However, the use of the Shannon wavelet simplifies the
problem and gives valuable insights. In the computer implementation,
the Shannon wavelet can be approximated by a long FIR filter or

Fig. 2. Time-average spectra of analyzed signals.

by a rectangular window in the frequency domain. Furthermore,
Daubechies wavelets [12] approximate the Shannon wavelet as their
smoothness indexN tends to infinity. Since the option to analyze
1=fff data with a relatively short FIR filter is an important issue,
we also test Daubechies wavelets with 48 taps (corresponds to
N = 24) and obtain that they give a satisfactory results in terms
of the wavelet components correlation. Note that in this case, (13)
does not hold, and an alternative equation was derived from (12)
by replacingSx(2m!) with j	(!)jSx(2

m!) and neglecting the
small overlap between adjacent bands. The number of data points
in the analyzed and synthesized signals in our simulation was
100 000.



1702 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 6, JUNE 1998

Fig. 3. Time-average spectra of a synthetic signal using ideal filter approx-
imation.

Fig. 4. Time-average spectra of a synthetic signal using Daubechies 48 tap
filter.

A. Analysis

The first analyzed signal was synthesized by the algorithm pre-
sented in [7], i.e., the1=fff process was created by simulating an
infinite RC line (corresponds to = 1). The second analyzed signal
was synthesized by simulating Brownian motion (corresponds to
 = 2). The time-average spectra of the input processes are presented
in Fig. 2.

The performance of the algorithms was tested by estimating the
decomposition components correlation function and comparing with
the analysis procedure, which does not use the whitening filter.
Tables I and II show that when the whitening filter is used, the
analysis filter bank gives almost uncorrelated output. These tables
demonstrate the improved quality of the proposed analysis algorithm.
Note that the tables are given only for bands with index 0, but all
other bands have a similar behavior. In the analysis procedure with
unknown, the estimate of was done by the algorithm proposed

in [18]. The difference between the analysis results with known
was negligible.

B. Synthesis

The algorithm proposed in this work was compared with the
algorithm proposed in [9]. Both algorithms were implemented with
two different wavelet bases—the Shannon wavelet and Daubechies
wavelets [12]. The time-average spectra of the synthesized processes
are shown in Figs. 3 and 4. From these figures, we can see that
the time-average spectrum of the signal produced by the procedure
proposed in this paper has the most accurate1=fff behavior.
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